История

Принципы построения СКС

Проблемы внедрения СКС в небольших сетях

Повторители и концентраторы.

Особенности работы концентраторов

Назначение и классификация концентраторов

Мосты

Маршрутизаторы

Коммутаторы (Свитчи)

Техническая реализация коммутаторов

Классификация коммутаторов

 

История

Попытки стандартизации кабельных сетей были предприняты еще в 1983 году, когда AT&T установила первую структурированную кабельную систему. Серьезно обстановка изменилась только в 1991 году, когда американская Ассоциация электронных отраслей промышленности (EIA) и Ассоциация индустрии связи (TIA) ввели стандарт на телекоммуникационные кабельные системы EIA/TIA 568, пересмотренный и дополненный в октябре 1995 года до используемого сейчас EIA/TIA 568А.

Целью этого стандарта было определение "структурированной кабельной системы" (СКС), которая может поддерживать любые приложения передачи аналоговых, видео и цифровых данных, и является частью инфраструктуры офиса или промышленного здания. При практическом отсутствии национальных альтернатив, EIA/TIA 568А широко распространился по миру. Именно на его основе были разработаны и приняты международные (ISO/EIC 11801) и европейские (EN50173) стандарты, которые, тем не менее, не нашли такого широкого применения на практике (тем более в России).

Принципы построения СКС

Основными признаками СКС считаются структурированность, универсальность, и избыточность.

Рассмотрим структурированность как главный, вынесенный в название, термин. Среда передачи сигналов состоит из элементов - кабелей и разъемов. Поэтому, функциональные элементы СКС (как части среды передачи), составляют кабели, оснащенные разъемами в точках подключения или коммутации, и проложенные по определенным правилам (с образованием линий и магистралей).

Международные стандарты разделяют три подсистемы

  1. Магистраль комплекса служит для соединения между собой различных зданий. Как правило, реализуется на оптоволоконном (реже медном кабеле), и позволяет соединять между собой здания, находящиеся на расстоянии до нескольких километров.
  2. Магистраль здания соединяет между собой этажи здания, обеспечивает связь между распределительной панелью здания и панелями этажей. Она должна включать в себя кабель, установленный вертикально между этажными панелями, главную или промежуточную панель в многоэтажном здании, а также кабель, установленный горизонтально между панелями в протяженном одноэтажном здании.
  3. Горизонтальная подсистема является частью, которая проложена между телекоммуникационной розеткой на рабочем месте, и этажной распределительной панелью. Каждый этаж здания рекомендуется обслуживать своей собственной горизонтальной подсистемой. На каждое рабочее место должно быть проложено как минимум два горизонтальных кабеля.

Универсальность в СКС достигается благодаря следованию стандартам, которые позволяют перейти от частных к открытым системам, с унифицированными параметрами, поддерживающими работу оборудования (причем как активного так и пассивного) любых производителей. Существует необходимость использования в СКС единой системы для всех видов коммуникаций, которые должны эксплуатироваться одной службой, по единым методикам и нормам.

Третий основной признак, избыточность, не слишком хорошо сказывается на стоимости. Но именно это позволяет строителями создавать системы прежде, чем станут известны требования пользователей, и обеспечить большой срок службы телекоммуникационной инфраструктуры здания.

Если попробовать кратко сформулировать преимущества СКС над обычными кабельными системами, с которыми строитель (инсталлятор) убеждает заказчика, то получится следующий список:

Проблемы внедрения СКС в небольших сетях

Считается, что СКС приспособлена для зданий с офисной площадью до 1,000,000 м2, и числом пользователей от 50 до 50000 человек, и расстояниями между зданиями до 3 км.

Три основных недостатка:

  1. Высокая стоимость строительства, которая является неизбежным следствием избыточности и универсальности.
  2. Подмена понятий качества среды передачи данных в сети удобством обслуживания и хорошим внешним видом.
  3. Высокая скорость смены технологий, делающая бессмысленным расточительством долгосрочные гарантии работоспособности.

Повторители и концентраторы.

Одной из первых задач, которая стоит перед любой технологией транспортировки данных, является возможность их передачи на максимально большое расстояние. В таких ситуациях применяют не усиление, а повторение сигнала.

Особенности работы концентраторов

Первое, что необходимо отметить - концентраторы работают на физическом уровне модели OSI. Поэтому для них совершенно безразлично, какие протоколы более высоких уровней используются в сети. Идеология проста и поэтому достаточно надежна. Все порты хаба равноправны, никакой логической обработке сигнал не подвергается, не буферизируется, коллизии не обрабатываются (только фиксируются их наличие на индикации некоторых моделей устройств).

Есть несколько простейших операций, которые делаются большинством концентраторов в автоматическом режиме.

Как повторители, так и концентраторы можно использовать в качестве отдельного устройства, или соединять друг с другом, увеличивая размер сети и усложняя топологию. Возможным вариантом будет шина, звезда, иерархическая звезда (дерево). Кольцевая топология недопустима.

По скорости можно различить хабы 10baseT и 100baseT Повторители I класса полностью декодируют входящий сигнал, преобразуют его в логическую форму, и передают на активные порты (задержка в районе 0,7 мс). При этом возможно использование нескольких технологий одновременно - например, 100BaseT4, 100BaseTX или 100BaseFX. Повторители II класса восстанавливают форму сигнала без его явного преобразования в логический вид. Соответственно, в этом случае задержка передачи заметно меньше (менее 0,46 мс по стандарту), но можно использовать только один протокол.

Назначение и классификация концентраторов

Основное назначение концентраторов (хабов) - это объединение территориально сосредоточенных рабочих мест в рабочую группу. Но вполне возможно использование хабов в качестве ретрансляторов между удаленными сетями или связи нескольких рабочих групп.

Схема применения хабов.

Рис. 10.2. Схема применения хабов

По сложности, можно разделить коцентраторы на следующие классы:

Мосты

Если две (или более) сети уже слишком велики для объединения в один коллизионный домен, или, вдобавок, территориально удаленны друг от друга, применяются мосты (Bridge). Как и повторители, они принимают данные на входящий порт, и передают на исходящий с восстановленными уровнем и формой сигнала.

Схема типичного варианта применения моста.

Рис. 10.3. Схема типичного варианта применения моста

Мост принимает входящий кадр в свой буфер, определяет его целостность и адрес (МАС) назначения. При этом каждая половина моста, анализируя поле адреса отправителя, ведет таблицу Ethernet-адресов узлов, находящихся на своей стороне. На другую сторону моста передаются только кадры широковещательной рассылки (Broadcast), и кадры, не имеющие получателя на своей стороне. Таким образом, коллизии не транслируются (как это происходит в повторителях).

Маршрутизаторы

Маршрутизаторы (роутеры, routегs) - это следующая ступень сетевой иерархии. Упрощенного говоря, их задача - выбор маршрута передачи данных (иначе говоря, объединение разнородных сетей). Соответственно, если мосты для передачи кадров используют адреса физического уровня (МАС), то маршрутизаторы (роутеры) обычно Они могут поддерживать очень сложные и не типовые функции. Например, подсчет трафика, авторизацию пользователей, ведение статистики, и т.п.

Классический пример их использования в простых провайдинговых схемах - граница между локальной сетью и Интернет. Вот незаменимые преимущества маршрутизаторов в этой технологической нише:

Коммутаторы (Свитчи)

Работа основывалось на простом технологическом фундаменте - параллельной обработке поступающих кадров на разных портах (мосты обрабатывают кадры последовательно, кадр за кадром).

Коммутаторы (подобно мостам) прозрачны для протоколов сетевого уровня, маршрутизаторы их "не видят".

Более того, в стремительном распространении коммутаторов не последнюю роль сыграла простота их настройки и установки. По умолчанию (без использования дополнительных возможностей) это самообучающееся устройство, его не обязательно конфигурировать. Коммутаторы - это самый мощный, универсальный, удобный для ЛВС класс оборудования.

Техническая реализация коммутаторов

Техническая основа работы коммутатора достаточно проста, и может быть выражена одним длинным предложением. Кадр, которые попадает на его вход (source port), направляется не на все активные порты (как это делает концентратор), а только на тот, к которому подключено устройство с МАС-адресом, совпадающим с адресом назначения кадра (destination port). Для работы используется специальная таблица соответствия (content-addressable memory, САМ), которую коммутатор формирует в процессе "самообучения" по следующему принципу: стоит порту получить ответ от устройства с физическим адресом Х, как в CAM таблице появляется соответствующая строчка соответствия.

Кадры с адресом назначения (source address, SA), имеющимся в таблице, направляются на соответствующий порт. При этом кадр, предназначенный всем узлам, или имеющий неизвестный коммутатору адрес назначения (destination address, DA), направляется на все активные порты.

Классификация коммутаторов

Различие коммутаторов по способу продвижения кадра Ethernet:

Кроме способа продвижения кадров, коммутаторы можно разделить на группы по внутренней логической архитектуре.

Коммутационная матрица. После анализа заголовка входящего кадра процессором порта, в соответствии с таблицей коммутации, в начало кадра добавляется номер порта назначения. Затем кадр (вернее сказать, номер порта назначения) попадал в двухмерную матрицу логических переключателей, каждый из которых управлялся определенным битом номера порта назначения.

Многовходовая разделяемая память. В этом случае входные и выходные блоки соединяются через общую память, подключением которой к блокам которой управляет специальный менеджер очередей выходных портов. Он же организует в памяти несколько (обычно по числу портов) очередей данных.

Архитектура с общей шиной. Название говорит само за себя - для связи процессоров портов используется одна шина. Для сохранения высокой производительности ее скорость должна быть по крайней мере в C/2 (где C - сумма скоростей всех портов) раз больше, чем скорость поступления данных в порт коммутатора.

Еще один признак, по которому можно классифицировать коммутаторы - это область применения. С некоторой долей условности, можно выделить:

Настольные коммутаторы. Предназначены для работы с небольшим числом пользователей, и могут служить хорошей заменой концентраторов 10/100Base-T. Обычно имеют 8-16 портов, небольшие габариты, настольное или "настенное" исполнение. Такие коммутаторы, как правило, не имеют возможности управления, поэтому просты в установке и обслуживании (хотя ценой отказа он некоторых полезных возможностей).

Коммутаторы для рабочих групп. Используются главным образом для объединения в единую сеть настольных коммутаторов или концентраторов 10/100Base-T, и ее соединения с магистральной СПД. Для этого используется объемная таблица маршрутизации (до нескольких десятков тысяч MAC-адресов на коммутатор), развитые средства фильтрации, построения виртуальных сетей, мониторинга трафика. Обязательно присутствует возможность управления (обычно удаленного), распространен протокол

Магистральные коммутаторы. Служат для соединения ЛВС в сетей передачи данных. Обычно это сложные и мощные конструкции, часто модульные. Имеют массу дополнительных возможностей настройки (вплоть до маршрутизации на III уровне по модели OSI), резервные источники питания, горячую замена модулей, обязательную поддержку приоритезации, протокола Spanning Tree, 802.1q, и других функций.

 

Hosted by uCoz